

Analysis and Prediction of Ice Shedding for a Full-Scale Heated Tail Rotor

Richard E. Kreeger - NASA Glenn
Andrew Work - Ohio Aerospace Institute
Rebekah Douglass - Ohio Northern University
Matthew Gazella - Kent State University
Zakery Koster - Virginia Tech
Jodi Turk - Cleveland State University

Outline

- Introduction
- Background
 - Overview of Shedding Models
 - Experimental Setup
- Data Analysis
 - Shedding Trajectory Analysis Tool
 - Image Processing
 - Shedding Trajectory Model
- Results
- Conclusions

LEWICE Ice Accretion Prediction

LEWICE is a software package the predicts the size, shape, and location of ice growth on aircraft surfaces exposed to a wide range of icing conditions.

- ✓ Flow solution using potential flow or structured viscous solver
- ✓ Particle trajectory calculation, including impingement limit search for collection efficiency and multiple drop size distributions
- ✓ Integral boundary layer routine calculates heat transfer coefficient
- Quasi-steady analysis of control volume mass and energy balance in time stepping routine
- ✓ Geometry modification using density correlations to convert ice growth mass into volume allows multiple time-step solutions
- All physical effects modeled, including turbulence, bouyancy, droplet deformation, breakup and splashing
- ✓ Extensive validation against experimental data

LEWICE also models the behavior of thermal ice protection systems while exposed to the same range of icing conditions.

Adhesion Models

AIAA 2003-732

Most shedding models used today are based on empirical adhesion data, and are mainly a function of temperature...

SAE 2003-01-2093

SAE 2007-01-3315

...but need to account for geometric conditions as well.

Typical Shedding Model

$$F_{Centrifugal} = F_{Adhesion} + F_{Cohesion} = m_{ice} r \Omega^2$$

$$F_{Adhesion} = \tau A_{Adhesion}$$

$$F_{Cohesion} = \sigma A_{Cohesion}$$

Fortin, G., and Perron, J.; "Spinning Rotor Blade Tests in Icing Wind Tunnel." AIAA 2009-4260, 1st AIAA Atmospheric and Space Environments Conference, June 22-25, 2009, San Antonio, TX.

Itagaki, K.; "Mechanical Ice Release Processes – I. Self-Shedding from High Speed Rotors." CRREL Report 83-26, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, October 1983.

NASA Glenn Icing Research Tunnel

Rotor Model in the Icing Research Tunnel

Rotor Model in the Icing Research Tunnel

Workflow of the STAT Script

Finding Shed Events

	Description	Rotor Speed (rpm)	Blade Pitch (deg)	Tunnel Static Temp. (°F)	Tunnel Speed (kts)	LWC (g/m³)	MVD (µm)
Run 67	Chordwise De-ice	1200	10	-4	60	0.5	15
Run 71	Spanwise De-ice	1200	5	-4	60	0.5	15

Image Processing – Original (Run 71)

Image Processing - Transformed

Image Processing – Background Subtracted

Image Processing – Background Subtracted

Image Processing – Final Stage

Run 67 Shed Event

Chordwise De-Ice Evaluation Run $V_{tunnel} = 60 \text{ kts}$ RPM = 1200Collective = 10°

 $T_{\text{static}} = -4 \, ^{\circ}\text{F}$ $t_{\text{spray}} = 6' \, 49''$

 $LWC = 0.5 \text{ g/m}^3$, MVD = 15 micronFrame Rate = 320 fps

Run 67 Shed Frame -4379

SHEDDING TRAJECTORY **MODEL (STM)**

Terms (1/2)

- L = rotor disc radius
- d_1 = start of shed ice
- d_2 = end of shed ice
- x_s = radial position of shed ice, inner edge
- = rotational position of the rotor,
 - Typically $\theta_i = 0$ at shed start
 - $-\theta_i$ can be adjusted to correct STAT's automatically identified shed start
- $Z = L d_2 + d_1$
 - When ice reaches blade tip and breaks off

Shown on next slide:

- A = cross-sectional area of ice, normal to X
- W = width of A at interface

Terms (2/2)

- A is the blue area———
- W is the length of the red line –

- F_c is the centrifugal force on the ice
- F_{nc} are the non-conservative forces
 - b is coefficient for viscous damping
 - F_f' is coefficient for friction (per unit length)
- $F_i = F_{nc} + F_c$

On-Rotor Position Calculation

$$a_{i}(x_{s}) = \frac{F_{i}(x_{s})}{M_{i}(x_{s})} = \begin{cases} \frac{\omega^{2}}{2} \left(2x_{s} + (d_{2} - d_{1})\right) - \frac{\left(\dot{x_{s}}bW + F'_{f}\right)}{\rho A}, x_{s} < z \\ \frac{\omega^{2}}{2} \left(L + x_{s}\right) - \frac{\left(\dot{x_{s}}bW + F'_{f}\right)}{\rho A}, x_{s} \ge z \end{cases}$$

On-Rotor Position Calculation

The on-rotor position is necessary to get initial velocity of ice leaving the rotor

Problem:

$$\begin{cases} \ddot{x_S} + B\dot{x_S} - \omega^2 x_S = \frac{w^2(d_2 - d_1 - 2F)}{2}, x_S < z \\ \ddot{x_S} + B\dot{x_S} - \frac{\omega^2}{2} x_S = \frac{w^2(L - 2F)}{2}, x_S \ge z \end{cases}$$

Solution:

$$x_s(t) = \begin{cases} c_1 e^{r_1 t} + c_2 e^{r_2 t} + F - \frac{d_2 - d_1}{2}, x_s < z \\ c_3 e^{r_3 t} + c_4 e^{r_4 t} + 2F - L, x_s \ge z \end{cases}$$

$$B = \frac{bW}{\rho A}$$
$$F = \frac{F_f'}{\rho A \omega^2}$$

$$r_{1,2} = \frac{\left(-B \pm \sqrt{B^2 + 4\omega^2}\right)}{2}$$

$$r_{3,4} = \frac{\left(-B \pm \sqrt{B^2 + 2\omega^2}\right)}{2}$$

$$c_1 = \frac{d_1 + d_2 - 2F}{2(1 - \frac{r_1}{r_2})}$$

$$c_2 = \frac{d_1 + d_2 - 2F}{2(1 - \frac{r_2}{r_1})}$$

$$c_3 = \frac{V_{1f} - r_4(2L - 2F - d_2 + d_1)}{r_3 - r_4}$$

$$c_4 = \frac{V_{1f} - r_3(2L - 2F - d_2 + d_1)}{r_4 - r_3}$$

Off-Rotor Position Calculation

$$x_i = L\cos(\omega t + \theta_i)\,\hat{\imath} + L\sin(\omega t + \theta_i)\,\hat{\jmath}$$

$$V_t = \omega L$$

$$\dot{x_s}(t) = V_r = \begin{cases} c_1 r_1 e^{r_1 t} + c_2 r_2 e^{r_2 t}, x_s < z \\ c_3 r_3 e^{r_3 t} + c_4 r_4 e^{r_4 t}, x_s \ge z \end{cases}$$

$$V_i(B,F) = (V_r(B,F)\cos(\omega t + \theta_i) - V_t\sin(\omega t + \theta_i))\hat{i} + (V_r(B,F)\sin(\omega t + \theta_i) + V_t\cos(\omega t + \theta_i))\hat{j}$$

Predicted position of shed ice with quadratic drag (c is the drag term):

$$x_2(t, B, F, c) = \frac{m}{c} \ln \left(1 + \frac{cV_i(B, F)t}{m} \right) + x_i$$

$$c = \frac{c_d A_p \rho_a}{2m}$$

RESULTS

 $F = 0, B = 0, c = 0, \theta = 0$

Shed Ice Images Compared to Unfit STM, Run 71.

F = 0, B = 60, c = 0.0004, $\theta = 0$

 $F = 0, B = 60, c = 0, \theta = 0$ **Dotted cyan line is prediction** for singular shed

Shed Ice Images Compared to Fit STM, Run 71.

Shed Ice Images Compared to Fit STM, Run 67.

Estimated Shed Ice Mass for High Speed Impact **Analysis**

	Total mass shed (kg)	No. particles	Avg particle mass (kg)	St. dev. of masses (kg)
Run 67				
(chordwise)	0.0511	38	0.00134	0.0023
Run 71				
(spanwise)	0.1064	108	0.00099	0.0037
Run 83				
(natural)	0.0045	4	0.00113	0.0006

Estimated Mass Distribution

Conclusions

- Two runs consisting of three shed events were analyzed
- The STAT tool was developed to post-process the data
- A model (STM) to predict the trajectory of a shed front was developed
 - Viscous forces at the interface between the ice and the rotor are significant
 - B is the most important fit parameter, B = 60 provides current best fit
 - There is insufficient data to estimate the importance of the c term
 - Interstitial breaks increase the shed fan angle
- The mass distribution of shed ice was estimated

Questions?

